Optimization for GDR IFM

Hang Zhou

École Polytechnique

Scientific day on optimization

Informatique Fondamentale et ses Mathématiques (IFM)

Direction: Pierre Fraigniaud and Guillaume Theyssier

Problems and motivations: Foundations of computer science

Strong interaction with mathematics

- **Combinatorics, graphs, and dynamic systems** ALEA, COMBALG, Graphes, SDA2, SEQBIM
- Computability, complexity, algorithmic, and quantum computation
 COA, Calculabilités, IQ
- **Computer algebra, arithmetic, and cryptography** ARITH, CF, C2
- **Programs, verification, proof, automaton, and logic** DAAL, VERIF, SCALP, LHC, BIOSS
- Geometry and image GDMM, MG, GEOALGO

Capacitated Vehicle Routing Problem (CVRP)

Input:

- depot
- set of terminals
- capacity k

Minimize total length of tours

Two models: unit demand v.s. arbitrary unsplittable demand Fundamental problem in operations research

Unit Demand

1985 (Haimovich and Rinnooy Kan
1990 (Altinkemer and Gavish
1997 🤇	Asano, Katoh, Tamaki, and Tokuyama
1998 (Hamaguchi and Katoh
2001	Asano, Katoh, and Kawashima
2006	Bompadre, Dror, and Orlin
2010	Adamaszek, Czumaj, and Lingas
2010	Das and Mathieu
2017	Becker, Klein, and Saulpic
2018	Becker, Klein, and Saulpic
2018	Becker
2019	Becker, Klein, and Schild
2019	Becker and Paul
2020	Cohen-Addad, Filtser, Klein, and Le
2022	Blauth, Traub, and Vygen
2022	Jayaprakash and Salavatipour
2022	Jayaprakash and Salavatipour
2022	Mathieu and Z.
2023	Mömke and Z.
2023	Mathieu and Z.
2023	Dufay, Mathieu, and Z.
2024	Nie and Z.

Unsplittable Demand

1981	Golden and Wong
1987	 Altinkemer and Gavish
1991	Labbé, Laporte, and Mercure
2021	Blauth, Traub, and Vygen
2022	Friggstad, Mousavi, Rahgoshay, and Salavatipour
2023	• Grandoni, Mathieu, and Z.
2023	Mathieu and Z.

general metrics
Euclidean plane
trees
planar graphs
graphs of bounded treewidth
graphs of bounded highway dimension
graphic metrics

Outline

Unit-demand CVRP on trees

• $(1 + \epsilon)$ -approximation [Mathieu and Z. 2022]

Unit-demand CVRP in the Euclidean plane - random setting

• 1.55-approximation [Nie and Z. 2024]

Unit-demand CVRP in graphic metrics

• 1.95-approximation [Mömke and Z. 2023]

Unsplittable CVRP on trees

- $(1.5 + \epsilon)$ -approximation [Mathieu and Z. 2023]
- 1.5-hardness [Golden and Wang 1981]

Unsplittable CVRP in the Euclidean plane

• $(2 + \epsilon)$ -approximation [Grandoni, Mathieu, and Z. 2023]

Part I: Unit demand CVRP on trees

- 1.5-approximation [HK'98]
- 1.351-approximation [AKK'01]
- 1.333-approximation [Bec'18]
- bicriteria $(1 + \epsilon)$ -approximation [BP'19]
- quasi-polynomial time
 - $(1+\epsilon)$ -approximation [JS'22]

Mathieu and Z. 2022

polynomial time $(1 + \epsilon)$ -approximation (PTAS)

First PTAS for CVRP in any non-trivial metric

Jayaprakash and Salavatipour [SODA 2022]:

"it is not clear if it (their algorithm) can be turned into polynomial time without significant new ideas."

Preprocessing: bounded distance property

Decomposing the tree into components

Each **component** has $\approx k/\epsilon$ terminals.

Structure Theorem

There is a near-optimal solution such that each subtour in a component visits at least $\epsilon \cdot k$ terminals.

Definition: a subtour is **small** if it visits less than $\epsilon \cdot k$ terminals.

How to eliminate small subtours?

- Detach small subtours
- Ombine small subtours within components
- 8 Reassign combined subtours

After reassignment, some tours may exceed capacity.

Proof of the Structure Theorem (2/2)

Remove some subtours

traveling salesman tour

- Include spines of the components .
- **9** Partition the traveling salesman tour into smaller tours

Structure Theorem

There is a near-optimal solution such that each subtour in a component visits at least $\epsilon \cdot k$ terminals.

Computing solutions inside each component: **polynomial time** Combining solutions from different components: **exponential time**

- Q: How to improve the running time?
- A: Adaptive rounding to reduce the number of subtour demands.

Adaptive rounding

At each vertex:

Sort subtour demands

2 Make groups of equal cardinality

8 Round up to maximum demand in group

Theorem [Jayaprakash and Salavatipour]

There is a near-optimal solution in which the subtour demands can be rounded up to **polylogarithmic** many values.

\implies quasi-polynomial time

Theorem [Mathieu and Z.]

There is a near-optimal solution in which the subtour demands can be rounded up to **constant** many values.

 \implies polynomial time

Dynamic program

Order of computation:

- each component
- 0 subtrees rooted at d and e by adaptive rounding
- 0 subtrees rooted at b and c
- subtree rooted at a by adaptive rounding

Mathieu and Z. 2022

polynomial time $(1+\epsilon)\text{-approximation}$ for unit demand tree CVRP

Part II: Unit-demand CVRP in the Euclidean plane

Terminals: independent, identically distributed random points in $[0,1]^2$

Haimovich and Rinnooy Kan 1985

2-approximation

Bompadre, Dror, and Orlin 2007

1.995-approximation

Mathieu and Z. 2023

1.915-approximation

Nie and Z. 2024

1.55-approximation

Two factors in the solution cost:

- traveling salesman tour cost TSP
- radial cost rad := $\frac{2}{k} \cdot \sum_{v} \delta(v)$, where $\delta(v)$ is the *v*-to-depot distance

Properties on the optimal cost **OPT**:

- OPT \geq TSP
- OPT \geq rad

Implication: 2-approximation

Analysis: Our Approach

Generalization of radial cost and TSP cost

For a real value R:

•
$$\mathsf{TSP}(R) := \mathsf{TSP}$$
 cost on $\{v : \delta(v) \ge R\}$

•
$$\operatorname{\mathsf{rad}}(R) := rac{2}{k} \sum_v \min\left\{\delta(v), R\right\}$$

Structure Theorem

$$\mathsf{OPT} \geq \mathsf{TSP}(R) + \mathsf{rad}(R).$$

Implications:

- $R = 0 \implies \text{OPT} \ge \text{TSP}$
- $R = \infty \implies \mathsf{OPT} \ge \mathsf{rad}$
- R well chosen:

Nie and Z. 2024

1.55-approximation

Outline

Unit-demand CVRP on trees

• $(1 + \epsilon)$ -approximation [Mathieu and Z. 2022]

Unit-demand CVRP in the Euclidean plane - random setting

• 1.55-approximation [Nie and Z. 2024]

Unit-demand CVRP in graphic metrics

• 1.95-approximation [Mömke and Z. 2023]

Unsplittable CVRP on trees

- $(1.5 + \epsilon)$ -approximation [Mathieu and Z. 2023]
- 1.5-hardness [Golden and Wang 1981]

Unsplittable CVRP in the Euclidean plane

• $(2 + \epsilon)$ -approximation [Grandoni, Mathieu, and Z. 2023]

Thank you!