Optimization for GDR IFM

Hang Zhou

Ecole Polytechnique ´

Scientific day on optimization

Informatique Fondamentale et ses Mathématiques (IFM)

Direction: Pierre Fraigniaud and Guillaume Theyssier

Problems and motivations: Foundations of computer science

Strong interaction with mathematics

- Combinatorics, graphs, and dynamic systems ALEA, COMBALG, Graphes, SDA2, SEQBIM
- Computability, complexity, algorithmic, and quantum computation COA, Calculabilités, IQ
- Computer algebra, arithmetic, and cryptography ARITH, CF, C2
- Programs, verification, proof, automaton, and logic DAAL, VERIF, SCALP, LHC, BIOSS
- Geometry and image GDMM, MG, GEOALGO

Capacitated Vehicle Routing Problem (CVRP)

Input:

- depot
- **o** set of terminals
- capacity k

Minimize total length of tours

Two models: unit demand v.s. arbitrary unsplittable demand Fundamental problem in operations research

e general metrics Euclidean plane trees \bullet planar graphs graphs of bounded treewidth graphs of bounded highway dimension graphic metrics

Outline

Unit-demand CVRP on trees

• $(1 + \epsilon)$ -approximation [Mathieu and Z. 2022]

Unit-demand CVRP in the Euclidean plane – random setting

• 1.55-approximation [Nie and Z. 2024]

Unit-demand CVRP in graphic metrics

• 1.95-approximation [Mömke and Z. 2023]

Unsplittable CVRP on trees

- $(1.5 + \epsilon)$ -approximation [Mathieu and Z. 2023]
- 1.5-hardness [Golden and Wang 1981]

Unsplittable CVRP in the Euclidean plane

• $(2 + \epsilon)$ -approximation [Grandoni, Mathieu, and Z. 2023]

[Part I:](#page-6-0) [Unit demand CVRP on trees](#page-6-0)

Unit demand CVRP on trees

- 1.5-approximation [HK'98]
- 1.351-approximation [AKK'01]
- 1.333-approximation [Bec'18]
- bicriteria $(1 + \epsilon)$ -approximation [BP'19]
- quasi-polynomial time
	-

Mathieu and Z. 2022

polynomial time $(1 + \epsilon)$ -approximation (PTAS)

First PTAS for CVRP in any non-trivial metric

Jayaprakash and Salavatipour [SODA 2022]:

"it is not clear if it (their algorithm) can be turned into polynomial time without significant new ideas."

Preprocessing: bounded distance property

Decomposing the tree into components

Each component has $\approx k/\epsilon$ terminals.

Structure Theorem

There is a near-optimal solution such that each subtour in a component visits at least $\epsilon \cdot k$ terminals.

Definition: a subtour is **small** if it visits less than $\epsilon \cdot k$ terminals.

How to eliminate small subtours?

- **1** Detach small subtours
- 2 Combine small subtours within components
- ³ Reassign combined subtours

After reassignment, some tours may exceed capacity.

Proof of the Structure Theorem (2/2)

Remove some subtours

traveling salesman tour

- Include spines of the components
- **•** Partition the traveling salesman tour into smaller tours

Structure Theorem

There is a near-optimal solution such that each subtour in a component visits at least $\epsilon \cdot k$ terminals.

Computing solutions inside each component: polynomial time Combining solutions from different components: **exponential time**

- Q: How to improve the running time?
- A: Adaptive rounding to reduce the number of subtour demands.

Adaptive rounding

At each vertex:

9 Sort subtour demands

² Make groups of equal cardinality

³ Round up to maximum demand in group

Theorem [Jayaprakash and Salavatipour]

There is a near-optimal solution in which the subtour demands can be rounded up to **polylogarithmic** many values.

\implies quasi-polynomial time

Theorem [Mathieu and Z.]

There is a near-optimal solution in which the subtour demands can be rounded up to **constant** many values.

 \Rightarrow polynomial time

Dynamic program

Order of computation:

- **1** each component
- **2** subtrees rooted at d and e by adaptive rounding
- \bullet subtrees rooted at b and c
- \bullet subtree rooted at α by adaptive rounding

Mathieu and Z. 2022

polynomial time $(1 + \epsilon)$ -approximation for unit demand tree CVRP

[Part II:](#page-17-0) [Unit-demand CVRP in the Euclidean plane](#page-17-0)

Terminals: independent, identically distributed random points in $[0, 1]^2$

Haimovich and Rinnooy Kan 1985

2-approximation

Bompadre, Dror, and Orlin 2007

1.995-approximation

Mathieu and Z. 2023

1.915-approximation

Nie and Z. 2024

1.55-approximation

Two factors in the solution cost:

- **•** traveling salesman tour cost TSP
- radial cost $\mathsf{rad} := \frac{2}{k} \cdot \sum_v \delta(v)$, where $\delta(v)$ is the v-to-depot distance

Properties on the optimal cost OPT:

- \bullet OPT $>$ TSP
- OPT ≥ rad

Implication: 2-approximation

Analysis: Our Approach

Generalization of radial cost and TSP cost

For a real value R^1

• **TSP**
$$
(R) :=
$$
 TSP cost on $\{v : \delta(v) \geq R\}$

$$
\bullet\ \mathsf{rad}(R) := \tfrac{2}{k}\textstyle\sum_v\min\left\{\delta(v),R\right\}
$$

Structure Theorem

$$
\mathsf{OPT}\geq \mathsf{TSP}(R)+\mathsf{rad}(R).
$$

Implications:

- $R = 0 \implies$ OPT > TSP
- $R = \infty \implies$ OPT > rad
- \bullet R well chosen:

Nie and Z. 2024

1.55-approximation

Outline

Unit-demand CVRP on trees

• $(1 + \epsilon)$ -approximation [Mathieu and Z. 2022]

Unit-demand CVRP in the Euclidean plane – random setting

• 1.55-approximation [Nie and Z. 2024]

Unit-demand CVRP in graphic metrics

• 1.95-approximation [Mömke and Z. 2023]

Unsplittable CVRP on trees

- $(1.5 + \epsilon)$ -approximation [Mathieu and Z. 2023]
- 1.5-hardness [Golden and Wang 1981]

Unsplittable CVRP in the Euclidean plane

• $(2 + \epsilon)$ -approximation [Grandoni, Mathieu, and Z. 2023]

Thank you!